
Computational Thinking in University Mathematics Education: A Theoretical
Framework

Chantal Buteau Eric Muller Joyce Mgombelo Ana Isabel Sacristán

Brock University Brock University Brock University Cinvestav-IPN

In recent years “Computational thinking” has become a trending topic among teachers
who have seen their curricula include the term, and researchers who seek to pinpoint both
what it means and how it can be implemented in a meaningful way in classrooms. We see a
crucial need in mathematics education to understand how students could be empowered to
participate in the computational thinking that is now becoming an integral part of the
mathematics and broader community. In our research, we are interested in examining how
university mathematics students may come to appropriate programming and engage in
computational thinking for mathematics, as mathematicians would do. In this paper, we
present the theoretical framework that grounds our research.

Keywords: computational thinking, instrumental genesis, programming, third pillar of
scientific inquiry, undergraduate mathematics

Introduction

Before the advent of the personal computer, Papert (1971) envisioned a world in which
children fluently program computers, using them as a tool to act as young mathematicians.
Nearly half a century later, we’ve witnessed a widespread resurgence of interest in that
vision, manifested in educational reforms (e.g., in Europe: Bocconi, Chioccariello, Dettori,
Ferrari, & Engelhardt, 2016) and research regimes (e.g., Computational Thinking in
Mathematics Education, n.d.) in the name of computational thinking, which now is deemed a
21st century skill. We see a crucial need to understand how students can be empowered to
participate in such computational thinking that has become an integral part of the
mathematics and broader community.

This paper focuses on the theoretical framework that grounds our recently launched
5-year study, funded by the Canadian Social Sciences and Humanities Research Council
(SSHRC), that seeks to examine how postsecondary mathematics students learn to use
programming as a computational thinking instrument for mathematics. It is a naturalistic
study that takes place in a sequence of three programming-based mathematics courses
implemented in the mathematics department at Brock University (Canada) since 2001, where
undergraduate mathematics majors and future mathematics teachers learn to design, program,
and use interactive computer environments to investigate mathematics conjectures, concepts,
theorems, or real-world applications (Buteau, Muller, & Ralph, 2015; Muller, Buteau, Ralph,
& Mgombelo, 2009). The objectives of our research include: (a) describing students’
instrumental geneses of using programming as a computational thinking instrument for
mathematics; (b) exploring whether or not students appropriated it and, if so, have sustained
it beyond course requirements; and (c) identifying how instructors create a learning
environment to support students’ instrumental geneses. This study builds on our past and
ongoing research (e.g., Buteau & Muller, 2014; Buteau, Muller, & Marshall, 2015; Buteau,
Muller, Marshall, Sacristán, & Mgombelo, 2016).

Proposed Theoretical Framework
We start by discussing computational thinking and programming from a broad

perspective based on the work of Wing (2008) and others. We then turn our attention to

21st Annual Conference on Research in Undergraduate Mathematics Education 1171

computational thinking in mathematics portrayed by mathematicians’ research practices—for
example, as stated by the European Mathematical Society (2011). This leads to a discussion
of computational thinking in mathematics education, which in turn is informed by the work
of Weintrop et al. (2016) and the constructionist paradigm (Papert and Harel, 1991). Next, we
elaborate on our view of learning mathematics by engaging in computational thinking
drawing on some ideas from the work of Lave and Wenger (1991). Finally, we discuss Guin
and Trouche’s (1999) instrumental approach framework to inform our understanding of
technology integration in mathematics teaching and learning.

Computational Thinking

Wing (2014) describes computational thinking as “the thought processes involved in
formulating a problem and expressing its solution(s) in such a way that a computer—human
or machine—can effectively carry out” (para. 5). Thus, computational thinking is an
underlying process to computer programming. And as Grover and Pea (2013) state, computer
programming “is not only a fundamental skill of [computer science] and a key tool for
supporting the cognitive tasks involved in [computational thinking] but a demonstration of
computational competencies as well” (p. 40). Wing (2008) explains that “the essence of
computational thinking is abstraction” (p. 3717) and elaborates:

Computational thinking is a kind of analytical thinking. It shares with mathematical
thinking in the general ways in which we might approach solving a problem. It shares
with engineering thinking in the general ways in which we might approach designing
and evaluating a large, complex system that operates within the constraints of the real
world. It shares with scientific thinking in the general ways in which we might
approach understanding computability, intelligence, the mind and human behaviour.
(p. 3717)
The relationship of computer programming and computational thinking with

mathematical and scientific thinking and learning has been recognized since the development
of the Logo programming language (cf., Papert, 1980a; Feurzeig & Lukas, 1972). This
relationship is also highlighted in Brennan and Resnick’s (2012) proposed three-dimensional
framework characterizing “computational thinking” in terms of

computational concepts (the concepts designers engage with as they program, such as
iteration, parallelism, etc.), computational practices (the practices designers develop
as they engage with the concepts, such as debugging projects or remixing others’
work), and computational perspectives (the perspectives designers form about the
world around them and about themselves). (p. 1)
In the following sections we discuss computational thinking in mathematics and

computational thinking in mathematics education.

Computational Thinking in Mathematics

In terms of the development of mathematics itself, the European Mathematical Society
(2011) recognized an emerging way of engaging in mathematical research: “Together with
theory and experimentation, a third pillar of scientific inquiry of complex systems has
emerged in the form of a combination of modeling, simulation, optimization and
visualization” (p. 2). The notion of a third pillar had been raised previously in a 2005 report
by the United States’ President’ Information Technology Advisory Committee (2005)
highlighting the role of digital technology: “Together with theory and experimentation,
computational science now constitutes the ‘third pillar’ of scientific inquiry, enabling

21st Annual Conference on Research in Undergraduate Mathematics Education 1172

researchers to build and test models of complex phenomena” (p. 1). In 2016, mathematicians
who led a 6-month long thematic semester on Computational Mathematics in Emerging
Applications at the Centre de recherches mathématiques (CRM) in Montreal (Canada)
indicated that:

A fundamental change is taking place in the role of applied and computational
mathematics. The relationship between the modelling, analysis, and solution of
mathematical problems in applications has changed. … In emerging applications, the
choice of models goes hand in hand with the computational tools and the
mathematical analysis. (CRM, 2016, para. 1)

These emerging practices in mathematics research, we argue, fall under the umbrella of
computational thinking for mathematics and are grounded on programming technology.
Indeed, Weintrop et al.’s (2016) taxonomy (see Figure 1) gives insights into the
computational thinking engagement by mathematicians and scientists, which encompasses
the activities described by the European Mathematical Society (2011) and by the organizers
of the computational mathematics session at CRM. Weintrop et al.’s work was based on an
extensive literature review, an analysis of mathematics and science learning activities, and
interviews with “biochemists, physicists, material engineers, astrophysicists, computer
scientists, and biomedical engineers” (p. 134); the authors also outline what they believe to be
the integral computational thinking practices for mathematics and science. Broley, Buteau,
and Muller (2017) exemplified, through concrete research of mathematicians’ work, the
different forms of integral computational thinking practices proposed by Weintrop et al.

Figure 1. Taxonomy of computational thinking in mathematics and science (Weintrop et al., 2016, p. 135).

Adopting Brennan and Resnick’s (2012) framework in the context of mathematics, the

work of Weintrop et al. (2016) not only provides discipline-specific details for the
computational practices dimension, but also foregrounds computational perspectives—that is,
perspectives the mathematicians have come to recently develop about mathematics as a
discipline “in line with the increasingly computational nature of modern science and
mathematics” (Weintrop et al., 2016, p. 127).

Computational Thinking in Mathematics Education

Furthermore Weintrop et al. (2016) argue that “the varied and applied use of
computational thinking by experts in the field provides a roadmap for what computational
thinking instruction should include in the classroom” (p. 128). Their detailed taxonomy thus

21st Annual Conference on Research in Undergraduate Mathematics Education 1173

provides us with what it means, in the mathematics classroom, to engage in computational
thinking for mathematics as mathematicians would do.

As mentioned earlier, computational thinking in mathematics education has a legacy of
over 45 years in the Logo programming language and in the theory of constructionism (Papert
& Harel, 1991). The fundamental premise of the constructionist paradigm is to create student-
centered learning situations for students to consciously engage in constructing (e.g., program)
shareable, tangible objects, through meaningful —usually computer-based– projects: “People
construct new knowledge with particular effectiveness when they are engaged in constructing
personally meaningful products ... [that is] something meaningful to themselves and to others
around them” (Kafai & Resnick, 1996, p. 214).

Studies of constructionism at higher-level mathematics education show how
programming supports students’ understanding of mathematical concepts (e.g., Leron &
Dubinsky, 1995; Wilensky, 1995) and how it contributes to the development of critical
thinking skills (e.g., Abrahamson, Berland, Shapiro, Unterman, & Wilensky, 2004; Marshall,
2012). In fact, Noss and Hoyles (1996) stress that a learner, when engaging in modifying a
program, articulates relationships between concepts involved in a microworld “and it is in
this process of articulation that a learner can create mathematics and simultaneously reveal
this act of creation to an observer” (p. 54). In our work we concur with the constructionism
approach for classroom implementation of programming and the computational thinking that
it involves, and conceive mathematical learning by drawing from ideas found in situated
learning theory, as described next.

Learning Mathematics by Engaging in Computational Thinking

Our view of learning draws from Lave and Wenger’s (1991) work on communities of
practice. Hoadley (2012) points that two definitions of community of practice stem from
Lave and Wenger’s work: (i) a feature based definition that derives from the words
themselves meaning a community that shares practices and (ii) a process based definition
which focuses on the process of learning whereby communities of practice are seen as groups
in which a constant process of “legitimate peripheral participation” takes place. In our work,
we rely on the process-based definition. Lave and Wenger use the concept of legitimate
peripheral participation to describe how learners enter a community and gradually take up its
practices. We use this idea of legitimate peripheral participation to understand how students
learn mathematics through computational thinking. “Mathematics” is not seen as a body of
knowledge to be acquired by the student, but rather as a process of participation through
which the student gradually gains membership to a community (of mathematicians). Also, we
do not see computational thinking from a cognitive point of view (e.g., seeing a computer as
an interactive learning tool in illustrating concepts). Instead, we focus on how students create
and use computer tools to engage in opportunities to participate peripherally in practices
considered to be integral to the mathematical community as outlined by Weintrop et al.
(2016). In other words, we focus on how students (newcomers) engage in computational
thinking for mathematics as mathematicians (elders) would do.

This view on learning concords with the constructionism paradigm. Papert (1971) argued
that “being a mathematician, … like being a poet, or a composer or an engineer, means doing,
rather than knowing or understanding” (p.1), and that through programming mathematics,
learners engage in “computational mathematics” (p.25) through which they mathematize. For
Papert (1980b), the computer provides the learner a means for constructing “objects to think
with” and “allow[s] a human learner to exercise particular powerful ideas or intellectual
skills” (p.204) through exploration and discovery in a knowledge domain. This resonates with
how many mathematicians and scientists use the computer in the 21st Century as described

21st Annual Conference on Research in Undergraduate Mathematics Education 1174

earlier.
The work by Broley et al. (2017), cited earlier, exemplifies how undergraduate students

learned mathematics through the construction of interactive computational objects (i.e.,
‘objects to think with’), and how these practices align with those of working mathematicians:
for example, a first-year undergraduate’s engagement in computational problem-solving
practices –where she had to design, program, and use an interactive environment to explore,
graphically and numerically, the behavior of a dynamical system based on a two-parameter
cubic– shared similarities with a mathematician’s engagement in his research on permutation
of subsequences (see Figure 2).

Figure 2. Examples of computational problem-solving practices. Left: screenshot of an undergraduate’s
exploratory work of a dynamical system. Right: screenshot of a mathematician’s exploratory work on a

permutation structure (Broley et al., 2017, pp. 4, 6).

When students become proficient at using programming to engage in computational

thinking for mathematics “as mathematicians would do” (i.e., engaging in the computational
practices as well as taking on the computational perspectives similar to how a mathematician
would do), we consider that this technology has been integrated or that appropriation has
occurred. We now turn to discussing this and how it can be assessed.

Students’ Appropriation of Programming as a Computational Thinking Instrument

Cook, Smagorinsky, Fry, Konopak, and Moore (2002) explain that appropriation is a
developmental process involving socially formulated, goal-directed, and tool-mediated
actions through which learners actively adopt (i.e., what we could call “make their own”)
conceptual and practical tools, thus internalizing ways of thinking related to specific settings
in which learning takes place. The instrumental approach (Rabardel, 1995/2002) is a useful
framework for analyzing technological integration (Artigue, 2002; Guin & Trouche 1999)
and gaining insights into how students appropriate a (technological) tool, and such an
approach is used increasingly at the university level (cf., Gueude, Buteau, Mesa, & Misfeld,
2014).

The instrumental approach describes how artifacts (whether material or symbolic) are
appropriated when they are transformed into instruments through schemes of usage and
action by what is called instrumental genesis (Artigue, 2002). Trouche and Drijvers (2010)
suggest that an instrument has been appropriated when a “meaningful relationship exists
between the artifact and the user for a specific type of task” (p. 673). Thus, in order to assess
the appropriation and technological integration, it is necessary to look at the instrumental
genesis, by looking at both the artifact and its attached schemes. One way to do so is to look
at the traces that students leave in their activity and what they do with an artifact (Trouche
2004). Parallel to this, it is also necessary to take into account the teacher’s activity: his/her
conceptions, design, and orchestrations of the teaching resources (Trouche, 2004) and the

21st Annual Conference on Research in Undergraduate Mathematics Education 1175

instrumental integration, which is “how teachers organise the conditions for instrumental
genesis of the technology proposed to the students and to what extent (s)he fosters
mathematics learning through instrumental genesis” (Goos & Soury-Lavergne, 2010, p. 313).
Instrumental integration describes four stages of growing technology use in the classroom
(Assude, 2007): (a) instrumental initiation (stage 1)—students engage only in learning how to
use the technology; (b) instrumental exploration (stage 2)—mathematics problems motivate
students to further learn to use the technology; (c) instrumental reinforcement (stage 3)—
students solve mathematics problems with the technology, but must extend their technology
skills; and (d) instrumental symbiosis (stage 4)—students’ fluency with technology scaffolds
the mathematical task resulting in an improvement of both the students’ technology skills and
their mathematical understanding.

We associate these stages to a student’s computational thinking development dimensions
from Brennan and Resnick’s (2012) framework: stages 1 and 2 to computational concepts,
stages 2 to 4 to computational practices, and stages 3 and 4 to computational perspectives.
And it is in stage 4 where we argue that the student has appropriated programming as an
instrument for mathematics “as mathematicians would do” (both in terms of computational
practices and perspectives) as mentioned in the previous section, which we term
“programming as a computational thinking instrument for mathematics.”

Next Steps for the Research

In this paper, we presented the theoretical framework underlying our study focused on how
undergraduate mathematics students come to appropriate programming as a computational
thinking instrument for mathematics. Brennan and Resnick (2012) suggest ways of assessing
computational thinking development, including project portfolio analysis and interviews.
Accordingly, in our research we will collect student participants’ programming-based
mathematics projects (14 in total over the three courses) together with their corresponding
reflective journals, and students’ lab reflections. We will also conduct semi-structured
individual interviews with each of the participants in order to gain insights into students’
creation process (including decision-making) and traces of their ongoing work. This is
planned for two cohorts of 10 students each, followed over 3 consecutive years. Final
interviews and questionnaires will be used at the end of the participants’ 4- or 5-year program
studies, to examine the sustainability of their programming use. Aligned with Trouche’s
(2004) recommendation, semi-structured interviews with course instructors, field notes of
computer lab session observations, as well as course material will provide insights into the
instructors’ didactical aims and participants’ learning environment. The latter data will also
shed light on the instructors’ pedagogical decisions and to what extent these are in
accordance with the constructionist paradigm.

Acknowledgements
This study is funded by the Canadian Social Sciences and Humanities Research Council
#435-2017-0367.

References
Abrahamson, D., Berland, M., Shapiro, B., Unterman, J., & Wilensky, U. (2004). Leveraging

epistemological diversity through computer-based argumentation in the domain of
probability. For the Learning of Mathematics, 26(3), 19-45.

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection
about instrumentation and the dialectics between technical and conceptual work.
International Journal of Computers for Mathematical Learning, 7(3), 245-274.

21st Annual Conference on Research in Undergraduate Mathematics Education 1176

Assude, T. (2007). Teachers’ practices and degree of ICT integration. In D. Pitta-Pantazi &
G. N. Philippou (Eds.), Proceedings of the fifth congress of the European Society for
Research in Mathematics Education (pp. 1339-1348). Larnaka, Cyprus: Department of
Education, University of Cyprus.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing
computational thinking in compulsory education: Implications for policy and practice. EU
Science Hub. Retrieved from https://ec.europa.eu/jrc/en/printpdf/175911

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the American Educational
Research Association (AERA) annual conference. Retrieved from
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Broley, L., Buteau, C., & Muller, E. (2017). (Legitimate peripheral) computational thinking
in mathematics. Proceedings of the Congress of European Society for Research in
Mathematics Education (CERME), Dublin (Ireland), February 2017.

Buteau, C., & Muller, E. (2014). Teaching roles in a technology intensive core undergraduate
mathematics course. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The
mathematics teacher in the digital era: An international perspective on technology
focused professional development (pp. 163-185). Dordrecht, Netherlands: Springer.

Buteau, C., Muller, E., & Marshall, N. (2015). When a university mathematics department
adopted course mathematics courses of unintentionally constructionist nature: Really?
Digital Experience in Mathematics Education, 1(2-3), 133-155. doi:10.1007/s40751-015-
0009-x

Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., & Mgombelo, J. (2016). Undergraduate
mathematics students appropriating programming as a tool for modelling, simulation, and
visualization: A case study. Digital Experience in Mathematics Education, 2(2), 142-156.
doi:10.1007/s40751-016-0017-5

Buteau, C., Muller, E., & Ralph, B. (2015, June). Integration of programming in the
undergraduate mathematics program at Brock University. In Online Proceedings of
Math+Coding Symposium, London, ON. Retrieved from
http://researchideas.ca/coding/docs/ButeauMullerRalph-Coding+MathProceedings-
FINAL.pdf

Centre de recherches mathématiques. (2016). Computational mathematics in emerging
applications. Retrieved from
http://www.crm.umontreal.ca/act/theme/theme_2016_1_en/index.php

Computational Thinking in Mathematics Education. (n.d.). About. Retrieved from
http://ctmath.ca/about/

Cook, L. S., Smagorinsky, P., Fry, P. G., Konopak, B., & Moore, C. (2002). Problems in
developing a constructivist approach to teaching: One teacher’s transition from teacher
preparation to teaching. The Elementary School Journal, 102(5), 389-413.

European Mathematical Society. (2011). Position paper on the European Commission’s
contributions to European research. Retrieved from
http://ec.europa.eu/research/horizon2020/pdf/contributions/post/european_organisations/e
uropean_mathematical_society.pdf

Feurzeig, W., & Lukas, G. (1972). LOGO—A programming language for teaching
mathematics. Educational Technology, 12(3), 39-46.

Goos, M., & Soury-Lavergne, S. (2010). Teachers and teaching: Theoretical perspectives and
classroom implementation. In C. Hoyles & J.-B. Lagrange (Eds.), ICMI Study 17,
technology revisited, ICMI study series (pp. 311-328). New York, NY: Springer.

21st Annual Conference on Research in Undergraduate Mathematics Education 1177

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the
field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189X12463051

Gueudet, G., Buteau, C., Mesa, V., & Misfeld, M. (2014). Instrumental and documentational
approaches: From technology use to documentation systems in university mathematics
education. Research of Mathematics Education, 16(2), 139-155.

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical
instruments. The case of calculators. International Journal of Computers for
Mathematical Learning, 3(3), 195-227.

Hoadley, C. (2012). What is a community of practice and how can we support it? In D. H.
Jonassen & S. M. Land (Eds.), Theoretical foundations of learning environments (2nd Ed.)
(287-300) New York: Routledge.

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and
learning in a digital world. Mahwah, NJ: Erlbaum, Routledge.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New
York, NY: Cambridge University Press.

Leron, U., & Dubinsky, E. (1995). An abstract algebra story. American Mathematical
Monthly, 102(3), 227-242.

Marshall, N. (2012). Contextualizing the learning activity of designing and experimenting
with interactive, dynamic mathematics exploratory objects (Unpublished M.Sc. project
report). Brock University, St.Catharines, ON.

Muller, E., Buteau, C., Ralph, B., & Mgombelo, J. (2009). Learning mathematics through the
design and implementation of exploratory and learning objects. International Journal for
Technology in Mathematics Education, 63(2), 63-73.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and
computers (Vol. 17). Dordrecht, Netherlands: Kluwer.

Papert, S. (1971). Teaching children to be mathematicians vs. teaching about mathematics.
Artificial Intelligence Memo No. 249. Retrieved from http://hdl.handle.net/1721.1/5837

Papert, S. (1980a). Mindstorms: Children, computers, and powerful ideas. New York, NY:
Basic Books.

Papert, S. (1980b). Computer-based microworlds as incubators for powerful ideas. In R.
Taylor (Ed.), The computer in the school: tutor, tool, tutee (pp. 203–210). New York:
Teacher’s College Press.�

Papert, S., & Harel, I. (1991). Situating constructionisn. In S. Papert & I. Harel (Eds.),
Constructionism (pp. 1-12). Norwood, NJ: Ablex.

President’s Information Technology Advisory Committee. (2005). Computational science:
Ensuring America’s competitiveness. Retrieved from
https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

Rabardel, P. (1995/2002). Les hommes et les technologies; approche cognitives des
instruments contemporains. Paris, France: Armand Colin.

Trouche, L. (2004). Managing complexity of human/machine interactions in computerized
learning environments: Guiding students’ command process through instrumental
orchestrations. International Journal of Computers for Mathematical Learning, 9, 281-
307. doi:10.1007/s10758- 004-3468-5

Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education:
Flashback into the future. ZDM: The International Journal on Mathematics Education,
42, 667-681. doi:10.1007/s11858-010-0269-2

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science classrooms.
Journal for Science Education and Technology, 25, 127-147.

21st Annual Conference on Research in Undergraduate Mathematics Education 1178

Wilensky, U. (1995). Paradox, programming and learning probability. Journal of
Mathematical Behavior, 14(2), 231-280.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A, 366(1881), 3717-3725.

Wing, J. M. (2014, January 9). Computational thinking benefits society. Social Issues in
Computing, 40th Anniversary Blog, University of Toronto. Retrieved from
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html

21st Annual Conference on Research in Undergraduate Mathematics Education 1179

