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In recent years “Computational thinking” has become a trending topic among teachers 
who have seen their curricula include the term, and researchers who seek to pinpoint both 
what it means and how it can be implemented in a meaningful way in classrooms. We see a 
crucial need in mathematics education to understand how students could be empowered to 
participate in the computational thinking that is now becoming an integral part of the 
mathematics and broader community. In our research, we are interested in examining how 
university mathematics students may come to appropriate programming and engage in 
computational thinking for mathematics, as mathematicians would do. In this paper, we 
present the theoretical framework that grounds our research. 
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Introduction 

Before the advent of the personal computer, Papert (1971) envisioned a world in which 
children fluently program computers, using them as a tool to act as young mathematicians. 
Nearly half a century later, we’ve witnessed a widespread resurgence of interest in that 
vision, manifested in educational reforms (e.g., in Europe: Bocconi, Chioccariello, Dettori, 
Ferrari, & Engelhardt, 2016) and research regimes (e.g., Computational Thinking in 
Mathematics Education, n.d.) in the name of computational thinking, which now is deemed a 
21st century skill. We see a crucial need to understand how students can be empowered to 
participate in such computational thinking that has become an integral part of the 
mathematics and broader community. 

This paper focuses on the theoretical framework that grounds our recently launched 
5-year study, funded by the Canadian Social Sciences and Humanities Research Council 
(SSHRC), that seeks to examine how postsecondary mathematics students learn to use 
programming as a computational thinking instrument for mathematics. It is a naturalistic 
study that takes place in a sequence of three programming-based mathematics courses 
implemented in the mathematics department at Brock University (Canada) since 2001, where 
undergraduate mathematics majors and future mathematics teachers learn to design, program, 
and use interactive computer environments to investigate mathematics conjectures, concepts, 
theorems, or real-world applications (Buteau, Muller, & Ralph, 2015; Muller, Buteau, Ralph, 
& Mgombelo, 2009). The objectives of our research include: (a) describing students’ 
instrumental geneses of using programming as a computational thinking instrument for 
mathematics; (b) exploring whether or not students appropriated it and, if so, have sustained 
it beyond course requirements; and (c) identifying how instructors create a learning 
environment to support students’ instrumental geneses. This study builds on our past and 
ongoing research (e.g., Buteau & Muller, 2014; Buteau, Muller, & Marshall, 2015; Buteau, 
Muller, Marshall, Sacristán, & Mgombelo, 2016). 
 

Proposed Theoretical Framework 
We start by discussing computational thinking and programming from a broad 

perspective based on the work of Wing (2008) and others. We then turn our attention to 
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computational thinking in mathematics portrayed by mathematicians’ research practices—for 
example, as stated by the European Mathematical Society (2011). This leads to a discussion 
of computational thinking in mathematics education, which in turn is informed by the work 
of Weintrop et al. (2016) and the constructionist paradigm (Papert and Harel, 1991). Next, we 
elaborate on our view of learning mathematics by engaging in computational thinking 
drawing on some ideas from the work of Lave and Wenger (1991). Finally, we discuss Guin 
and Trouche’s (1999) instrumental approach framework to inform our understanding of 
technology integration in mathematics teaching and learning. 
 
Computational Thinking 

Wing (2014) describes computational thinking as “the thought processes involved in 
formulating a problem and expressing its solution(s) in such a way that a computer—human 
or machine—can effectively carry out” (para. 5). Thus, computational thinking is an 
underlying process to computer programming. And as Grover and Pea (2013) state, computer 
programming “is not only a fundamental skill of [computer science] and a key tool for 
supporting the cognitive tasks involved in [computational thinking] but a demonstration of 
computational competencies as well” (p. 40). Wing (2008) explains that “the essence of 
computational thinking is abstraction” (p. 3717) and elaborates:  

Computational thinking is a kind of analytical thinking. It shares with mathematical 
thinking in the general ways in which we might approach solving a problem. It shares 
with engineering thinking in the general ways in which we might approach designing 
and evaluating a large, complex system that operates within the constraints of the real 
world. It shares with scientific thinking in the general ways in which we might 
approach understanding computability, intelligence, the mind and human behaviour.  
(p. 3717) 
The relationship of computer programming and computational thinking with 

mathematical and scientific thinking and learning has been recognized since the development 
of the Logo programming language (cf., Papert, 1980a; Feurzeig & Lukas, 1972). This 
relationship is also highlighted in Brennan and Resnick’s (2012) proposed three-dimensional 
framework characterizing “computational thinking” in terms of  

computational concepts (the concepts designers engage with as they program, such as 
iteration, parallelism, etc.), computational practices (the practices designers develop 
as they engage with the concepts, such as debugging projects or remixing others’ 
work), and computational perspectives (the perspectives designers form about the 
world around them and about themselves). (p. 1) 
In the following sections we discuss computational thinking in mathematics and 

computational thinking in mathematics education.  
 
Computational Thinking in Mathematics 

In terms of the development of mathematics itself, the European Mathematical Society 
(2011) recognized an emerging way of engaging in mathematical research: “Together with 
theory and experimentation, a third pillar of scientific inquiry of complex systems has 
emerged in the form of a combination of modeling, simulation, optimization and 
visualization” (p. 2). The notion of a third pillar had been raised previously in a 2005 report 
by the United States’ President’ Information Technology Advisory Committee (2005) 
highlighting the role of digital technology: “Together with theory and experimentation, 
computational science now constitutes the ‘third pillar’ of scientific inquiry, enabling 
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researchers to build and test models of complex phenomena” (p. 1). In 2016, mathematicians 
who led a 6-month long thematic semester on Computational Mathematics in Emerging 
Applications at the Centre de recherches mathématiques (CRM) in Montreal (Canada) 
indicated that: 

A fundamental change is taking place in the role of applied and computational 
mathematics. The relationship between the modelling, analysis, and solution of 
mathematical problems in applications has changed. … In emerging applications, the 
choice of models goes hand in hand with the computational tools and the 
mathematical analysis. (CRM, 2016, para. 1) 

These emerging practices in mathematics research, we argue, fall under the umbrella of 
computational thinking for mathematics and are grounded on programming technology. 
Indeed, Weintrop et al.’s (2016) taxonomy (see Figure 1) gives insights into the 
computational thinking engagement by mathematicians and scientists, which encompasses 
the activities described by the European Mathematical Society (2011) and by the organizers 
of the computational mathematics session at CRM. Weintrop et al.’s work was based on an 
extensive literature review, an analysis of mathematics and science learning activities, and 
interviews with “biochemists, physicists, material engineers, astrophysicists, computer 
scientists, and biomedical engineers” (p. 134); the authors also outline what they believe to be 
the integral computational thinking practices for mathematics and science. Broley, Buteau, 
and Muller (2017) exemplified, through concrete research of mathematicians’ work, the 
different forms of integral computational thinking practices proposed by Weintrop et al.  
 

 
Figure 1. Taxonomy of computational thinking in mathematics and science (Weintrop et al., 2016, p. 135). 
 
Adopting Brennan and Resnick’s (2012) framework in the context of mathematics, the 

work of Weintrop et al. (2016) not only provides discipline-specific details for the 
computational practices dimension, but also foregrounds computational perspectives—that is, 
perspectives the mathematicians have come to recently develop about mathematics as a 
discipline “in line with the increasingly computational nature of modern science and 
mathematics” (Weintrop et al., 2016, p. 127). 
 
Computational Thinking in Mathematics Education 

Furthermore Weintrop et al. (2016) argue that “the varied and applied use of 
computational thinking by experts in the field provides a roadmap for what computational 
thinking instruction should include in the classroom” (p. 128). Their detailed taxonomy thus 
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provides us with what it means, in the mathematics classroom, to engage in computational 
thinking for mathematics as mathematicians would do. 

As mentioned earlier, computational thinking in mathematics education has a legacy of 
over 45 years in the Logo programming language and in the theory of constructionism (Papert 
& Harel, 1991). The fundamental premise of the constructionist paradigm is to create student-
centered learning situations for students to consciously engage in constructing (e.g., program) 
shareable, tangible objects, through meaningful —usually computer-based– projects: “People 
construct new knowledge with particular effectiveness when they are engaged in constructing 
personally meaningful products ... [that is] something meaningful to themselves and to others 
around them” (Kafai & Resnick, 1996, p. 214).  

Studies of constructionism at higher-level mathematics education show how 
programming supports students’ understanding of mathematical concepts (e.g., Leron & 
Dubinsky, 1995; Wilensky, 1995) and how it contributes to the development of critical 
thinking skills (e.g., Abrahamson, Berland, Shapiro, Unterman, & Wilensky, 2004; Marshall, 
2012). In fact, Noss and Hoyles (1996) stress that a learner, when engaging in modifying a 
program, articulates relationships between concepts involved in a microworld “and it is in 
this process of articulation that a learner can create mathematics and simultaneously reveal 
this act of creation to an observer” (p. 54). In our work we concur with the constructionism 
approach for classroom implementation of programming and the computational thinking that 
it involves, and conceive mathematical learning by drawing from ideas found in situated 
learning theory, as described next.  
 
Learning Mathematics by Engaging in Computational Thinking  

Our view of learning draws from Lave and Wenger’s (1991) work on communities of 
practice. Hoadley (2012) points that two definitions of community of practice stem from 
Lave and Wenger’s work: (i) a feature based definition that derives from the words 
themselves meaning a community that shares practices and (ii) a process based definition 
which focuses on the process of learning whereby communities of practice are seen as groups 
in which a constant process of “legitimate peripheral participation” takes place. In our work, 
we rely on the process-based definition. Lave and Wenger use the concept of legitimate 
peripheral participation to describe how learners enter a community and gradually take up its 
practices. We use this idea of legitimate peripheral participation to understand how students 
learn mathematics through computational thinking. “Mathematics” is not seen as a body of 
knowledge to be acquired by the student, but rather as a process of participation through 
which the student gradually gains membership to a community (of mathematicians). Also, we 
do not see computational thinking from a cognitive point of view (e.g., seeing a computer as 
an interactive learning tool in illustrating concepts). Instead, we focus on how students create 
and use computer tools to engage in opportunities to participate peripherally in practices 
considered to be integral to the mathematical community as outlined by Weintrop et al. 
(2016). In other words, we focus on how students (newcomers) engage in computational 
thinking for mathematics as mathematicians (elders) would do. 

This view on learning concords with the constructionism paradigm. Papert (1971) argued 
that “being a mathematician, … like being a poet, or a composer or an engineer, means doing, 
rather than knowing or understanding” (p.1), and that through programming mathematics, 
learners engage in “computational mathematics” (p.25) through which they mathematize. For 
Papert (1980b), the computer provides the learner a means for constructing “objects to think 
with” and “allow[s] a human learner to exercise particular powerful ideas or intellectual 
skills” (p.204) through exploration and discovery in a knowledge domain. This resonates with 
how many mathematicians and scientists use the computer in the 21st Century as described 

21st Annual Conference on Research in Undergraduate Mathematics Education 1174



earlier. 
The work by Broley et al. (2017), cited earlier, exemplifies how undergraduate students 

learned mathematics through the construction of interactive computational objects (i.e., 
‘objects to think with’), and how these practices align with those of working mathematicians: 
for example, a first-year undergraduate’s engagement in computational problem-solving 
practices –where she had to design, program, and use an interactive environment to explore, 
graphically and numerically, the behavior of a dynamical system based on a two-parameter 
cubic– shared similarities with a mathematician’s engagement in his research on permutation 
of subsequences (see Figure 2).  

 

   
 

Figure 2. Examples of computational problem-solving practices. Left: screenshot of an undergraduate’s 
exploratory work of a dynamical system. Right: screenshot of a mathematician’s exploratory work on a 

permutation structure (Broley et al., 2017, pp. 4, 6). 
 
When students become proficient at using programming to engage in computational 

thinking for mathematics “as mathematicians would do” (i.e., engaging in the computational 
practices as well as taking on the computational perspectives similar to how a mathematician 
would do), we consider that this technology has been integrated or that appropriation has 
occurred. We now turn to discussing this and how it can be assessed. 
 
Students’ Appropriation of Programming as a Computational Thinking Instrument 

Cook, Smagorinsky, Fry, Konopak, and Moore (2002) explain that appropriation is a 
developmental process involving socially formulated, goal-directed, and tool-mediated 
actions through which learners actively adopt (i.e., what we could call “make their own”) 
conceptual and practical tools, thus internalizing ways of thinking related to specific settings 
in which learning takes place. The instrumental approach (Rabardel, 1995/2002) is a useful 
framework for analyzing technological integration (Artigue, 2002; Guin & Trouche 1999) 
and gaining insights into how students appropriate a (technological) tool, and such an 
approach is used increasingly at the university level (cf., Gueude, Buteau, Mesa, & Misfeld, 
2014).  

The instrumental approach describes how artifacts (whether material or symbolic) are 
appropriated when they are transformed into instruments through schemes of usage and 
action by what is called instrumental genesis (Artigue, 2002). Trouche and Drijvers (2010) 
suggest that an instrument has been appropriated when a “meaningful relationship exists 
between the artifact and the user for a specific type of task” (p. 673). Thus, in order to assess 
the appropriation and technological integration, it is necessary to look at the instrumental 
genesis, by looking at both the artifact and its attached schemes. One way to do so is to look 
at the traces that students leave in their activity and what they do with an artifact (Trouche 
2004). Parallel to this, it is also necessary to take into account the teacher’s activity: his/her 
conceptions, design, and orchestrations of the teaching resources (Trouche, 2004) and the 
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instrumental integration, which is “how teachers organise the conditions for instrumental 
genesis of the technology proposed to the students and to what extent (s)he fosters 
mathematics learning through instrumental genesis” (Goos & Soury-Lavergne, 2010, p. 313). 
Instrumental integration describes four stages of growing technology use in the classroom 
(Assude, 2007): (a) instrumental initiation (stage 1)—students engage only in learning how to 
use the technology; (b) instrumental exploration (stage 2)—mathematics problems motivate 
students to further learn to use the technology; (c) instrumental reinforcement (stage 3)—
students solve mathematics problems with the technology, but must extend their technology 
skills; and (d) instrumental symbiosis (stage 4)—students’ fluency with technology scaffolds 
the mathematical task resulting in an improvement of both the students’ technology skills and 
their mathematical understanding.  

We associate these stages to a student’s computational thinking development dimensions 
from Brennan and Resnick’s (2012) framework: stages 1 and 2 to computational concepts, 
stages 2 to 4 to computational practices, and stages 3 and 4 to computational perspectives. 
And it is in stage 4 where we argue that the student has appropriated programming as an 
instrument for mathematics “as mathematicians would do” (both in terms of computational 
practices and perspectives) as mentioned in the previous section, which we term 
“programming as a computational thinking instrument for mathematics.”  

 
Next Steps for the Research 

In this paper, we presented the theoretical framework underlying our study focused on how 
undergraduate mathematics students come to appropriate programming as a computational 
thinking instrument for mathematics. Brennan and Resnick (2012) suggest ways of assessing 
computational thinking development, including project portfolio analysis and interviews. 
Accordingly, in our research we will collect student participants’ programming-based 
mathematics projects (14 in total over the three courses) together with their corresponding 
reflective journals, and students’ lab reflections. We will also conduct semi-structured 
individual interviews with each of the participants in order to gain insights into students’ 
creation process (including decision-making) and traces of their ongoing work. This is 
planned for two cohorts of 10 students each, followed over 3 consecutive years. Final 
interviews and questionnaires will be used at the end of the participants’ 4- or 5-year program 
studies, to examine the sustainability of their programming use. Aligned with Trouche’s 
(2004) recommendation, semi-structured interviews with course instructors, field notes of 
computer lab session observations, as well as course material will provide insights into the 
instructors’ didactical aims and participants’ learning environment. The latter data will also 
shed light on the instructors’ pedagogical decisions and to what extent these are in 
accordance with the constructionist paradigm. 
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