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The instrumental approach, and in particular the concept of scheme, can contribute to our 
understanding of how students learn programming for mathematical inquiry at university. While most 
studies consider only individual schemes, in this paper we propose to investigate schemes’ social 
aspects, focusing on the scheme of “Validating the programmed mathematics”. Through a 
questionnaire conducted with students over 2 years, and interview data, we identify shared rules-of-
action developing over time. Deepening the analysis for the case of two contrasted students, we 
observe that common rules-of-action can be associated with different theorems-in-action.  
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1. Introduction  
The study presented here is part of a larger 5-year project, whose aim is to better understand how 
students learn programming for mathematical inquiry at the university level. In our previous work 
(Buteau, Gueudet, et al., 2020; Gueudet et al., 2020) we have shown that the instrumental approach 
(Rabardel & Béguin, 2005; Trouche, 2003) and the concept of scheme (Vergnaud, 2009) can 
contribute to this aim. This concept allowed us in particular to investigate how students develop 
operational knowledge (knowledge that provides means to do and succeed, Vergnaud, 2009), through 
instrumental geneses. We focused only on the individual level: the schemes developed by a given 
student. Nevertheless, at university, students learn in a social context, and most probably their 
schemes also comprise common elements. Some aspects of the operational form of knowledge are 
shared; identifying these aspects is essential in particular to inform teachers’ orchestrations (Trouche 
2003) in this context. The question we investigate here is: Can we identify patterns in the culture of 
a community of students learning to use programming for mathematical inquiry? 

In terms of research, we claim that studying this issue is an important theoretical and methodological 
contribution, because the instrumental approach has been used mostly for studying individual 
learning processes. In terms of teaching, we have observed in a previous study (Buteau, Muller, et 
al., 2020) that insights into students’ schemes can be very helpful for teachers orchestrating their 
learning of programming for mathematical inquiry. 

Our study takes place in the context of a sequence of three university mathematics courses called 
Mathematics Integrated with Computers and Applications (MICA I-II-III) taught at Brock University 
since 2001 (Buteau & Muller, 2010). In these project-based courses, mathematics majors and future 
mathematics teachers learn to use programming for mathematical inquiry (e.g., using programming 
to simulate a battle between two armies; see section 5). 
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2. Theory and research questions  
We draw from Vergnaud’s (2009) theory of conceptualization, distinguishing between an operational 
form of knowledge (knowledge that provides means to do and succeed) and a predicative form of 
knowledge (knowledge that consists of means to express ideas in words or symbols). We argue that 
Vergnaud’s theory is relevant for our study because operational knowledge is very important when 
learning to use programming for mathematical inquiry.  

Operational knowledge’s development and evolution are captured by Vergnaud (2009) through the 
concept of scheme, which is central in our study. A scheme is an invariant organization of activity 
for a certain goal and consists of four components: the goal and sub-goals; rules-of-action (RoAs), to 
generate action, information seeking, and control; operational invariants (concepts-in-action, which 
are concepts considered as relevant, and theorems-in-action (TiAs), which are propositions 
considered as true); and possibilities of inferences. 

We also use the instrumental approach, particularly its theory of instrumental genesis, which 
conceptualizes the process of how users (learners) transform an artefact (a human product, designed 
for a goal-directed activity) into an instrument for a specific goal and situation (Rabardel & Béguin, 
2005). For Rabardel and Béguin (2005), an instrument is a hybrid entity: partly an artefact and partly 
scheme(s). 

According to Rabardel and Béguin (2005), schemes have both a private and a social dimension. The 
private dimension is specific to each individual, while the social dimension reflects the fact that 
schemes may be shared by members of social groups. The social dimension also may be a 
consequence of schemes developing during a process involving individuals who are not isolated; for 
example, classmates working on assignments in a shared space such as a computer lab. Schemes may 
be shared informally or prompted/promoted formally by training, such as in teaching and learning 
situations (e.g., through assignment guidelines, lectures, etc.). 

This points to the possibility of the development of social dimensions of schemes in teaching 
situations. In fact, Trouche (2003) claims that through instrumental orchestration, one aim of the 
teacher is to reduce the variability of the individual schemes students develop, in order to strengthen 
the social dimensions of schemes; for instance, reflecting those shared by an intended community of 
practice, such as that of mathematicians (Lave & Wenger, 1991).   

The above theoretical elements lead us to refine our initial question as follows: Can we identify 
common elements in the schemes developed by students learning programming for mathematical 
inquiry? For a common goal, do students share common RoAs, and if so, are these rules associated 
with the same operational invariants? How do these common elements develop over time, in a course, 
and over several years of courses?  

3. Methods  
In our past work, we developed a general model of students engaging in learning to use programming 
for mathematical inquiry (Buteau & Muller, 2010), which enabled us to identify common goals in the 
schemes developed by students. For this study, we focus on one such goal, namely “Validating the 
programmed mathematics”, considered as particularly important because it associates mathematics 
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and programming. For this goal, we further focus on RoAs because most operational invariants and 
inferences cannot be made explicit; RoAs are more explicitly identifiable.  

We mainly draw from two types of data: a questionnaire and individual interviews. The questionnaire 
was given to students at the end of each MICA course over 3 years (2019–2021), and included 
questions on demographics, confidence levels in programming (mathematics), et cetera. Since 2020, 
it also included two questions seeking insights about two specific schemes. Each of these questions 
presented a list of RoAs in a matrix format and a 5-point Likert scale for students to answer if they 
used the RoA always, often, sometimes, rarely, or never. Most of these RoAs were identified in our 
previous work analyzing a student’s activity (Buteau, Gueudet et al., 2020), and some more were 
added based on our experience as mathematicians researching with programming or teaching 
programming for mathematics investigations. The questionnaire was answered by 30 anonymous 
volunteer students, in addition to another 13 volunteer students whom we have been following closely 
throughout their MICA courses (e.g., using also individual interviews). 

We used relative frequency bar graphs for responses to each of the questions and for responses 
regrouped into three categories (always/often, sometimes, rarely/never) in order to identify RoAs that 
could be considered as social. To do so, we used an arbitrary threshold of 70% of the regrouped 
always/often responses. We note that the sample of 43 participants is not necessarily representative 
of the entire MICA community but can nevertheless give insights into potential social dimensions of 
schemes. For triangulation purposes, we also called upon interview data. For this paper, we selected 
data collected in Year 2 (2019) of our research since we had the opportunity to collect data both from 
an instructor (Bill) and some of his students. In one of the interviews with this MICA II instructor, 
we showed him the list of RoAs and invited him to comment on whether, according to him, students 
enact the RoAs, and to elaborate about his related guidance.  

Finally, we went to individual student cases. Two among eight student participants enrolled in Bill’s 
MICA II class were selected due to their more reflective answers in interviews and for their differing 
profiles: Kassie is a female student enrolled in the mathematics and education program who had no 
programming background prior to starting her university studies and Mark is a male computer science 
and mathematics co-major student who had a significant programming background prior to MICA I. 
After each of the programming-based mathematics inquiry projects (five assignments), individual 
semi-structured interviews were conducted. We used guiding questions incorporating “explicitation” 
techniques (Vermersch, 2006) to help students relive their actions during the development of their 
investigation projects. Kassie and Mark’s interview data were coded to identify potential elements of 
schemes (in particular, the “Validating” scheme) according to their RoAs and TiAs (Gueudet et al., 
2020), which were then confronted with their assignment reports. The outcomes of this analysis were 
organized in terms of RoAs and summarized for each project in a common Excel table, to which we 
added Kassie and Mark’s own questionnaire responses as well as the relative frequencies of the 
overall questionnaire responses. Using these tables, we identified individual elements of the 
“Validating” scheme for Kassie and Mark, respectively.  
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4. Identifying social aspects of a scheme 
In this section, we present the results of our analysis identifying the social RoAs for the “Validating” 
scheme (Buteau, Gueudet, et al., 2020), as part of the process of creating a program for conducting a 
mathematical inquiry. We consider an aspect of a scheme to be “social” when it is shared by a social 
community. In our analysis, we realized that RoAs may be identified as social (or not) depending on 
whether the community in which they are shared comprises the students in MICA I or the students in 
upper MICA courses (i.e., MICA II and III). These two communities are not independent: We might 
even see the MICA I student community as in the process of “becoming” or “developing” into an 
upper year MICA community. This relates to the instrumental lens, whereby the study of students’ 
instrumental geneses is considered as progressing over time. Hence, we will not consider as our 
reference community all MICA students. Note that we grouped 2nd- and 3rd-year students (into upper 
MICA) to have more appropriate sample sizes for comparison purposes (N=18 for upper MICA, 
N=25 for MICA I). This also reflects the implementation model in these courses: MICA II and III 
invite students to use programming skills to engage in mathematics inquiry, while MICA I is also 
focused on developing students’ programming skills (due to their lack of background in 
programming). 

RoA Upper MICA  MICA I 

1. I check a few times as I program by compiling with a few inputs. 94, 6, 0  72, 28, 0 

2. Once I have programmed it all, I run the program with a few different 
inputs and compare the output with my hand calculations. 

89, 0, 11 92, 8, 0 

3. I compare the output of my program with that of a peer or with examples 
from the internet.  

83, 6, 11 40, 24, 36 

4. I compare my program with that of a peer. 72, 17, 11 32, 24, 44 

5. I ask someone (a peer, a TA, the instructor, etc.) 61, 22, 17 52, 20, 28 

6. I trust that I translate in vb.net/python what I do on paper. († This is the 
original wording in the questionnaire. However, we acknowledge that this 
formulation rather points to an operational invariant and a ‘no RoA’.) 

56, 22, 22 28, 32, 40 

7. I use other technology (Maple, Desmos, etc.) to generate an example and 
compare it with the output of my program. 

28, 50, 22 64, 24, 12 

*  I don’t really know if it works. (* We label this statement differently because 
it is not a rule-of-action. It is more an indication that students do not have a fully 
developed scheme for validating the programmed mathematics.) 

11, 22, 67 8, 24, 68 

Figure 1: Percentages of participants who say they do the RoA always/often, sometimes, rarely/never, 
in response to the question “When I program a mathematics concept, I know that it works because…” 

Figure 1 depicts findings from the online questionnaire, listing the RoAs in the order of highest to 
lowest percentage of upper MICA participants stating that they use it always or often when validating 
a programmed mathematics process.  

While these RoAs can seem to concern programming in general, we note that the question invites the 
students to answer only about programming a mathematics concept. Some of the rules are directly 
linked with mathematics: calculating by hand (RoA 2), or with Maple (RoA 7). Moreover, when the 
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scheme is mobilized in a specific mathematical situation, these rules are specified in relation to the 
mathematical contents, as we illustrate in the following section.  

The top four RoAs are used by more than 70% of the upper MICA participants, suggesting that those 
RoAs may be social components of the validating scheme for the upper MICA community.  

RoAs 1 and 2 appear to be social also in MICA I. For RoA 2, the proportions are similar: 89% and 
92%, respectively. One reason for this may be that the lab and assignment guidelines explicitly 
encourage students to check their output with hand calculations, starting in MICA I. In contrast, for 
RoA 1 the proportions have a greater difference: from 72% in MICA I to 94% in upper MICA. One 
way to explain this is that RoA 1 goes together with the practice of coding incrementally. The MICA 
II instructor from our study, Bill, explains:  

Bill:  They will often test. … They develop programs incrementally, so they’ll write … 
just a couple of … a loop or something and they just [say]… see: does that make 
sense? 

Such a skill may require time to develop. Also, the mathematics problems explored in upper MICA 
lead to more elaborated programs, which can encourage students to code incrementally. This is in 
contrast with RoA 2, where students check after the program is completed.  

RoAs 3 and 4 appear to become social only in the upper MICA community. For RoA 3, the proportion 
increases from 40% in MICA I to 83% in upper MICA. This could be related to upper MICA students 
having become more confident in their own skills and more comfortable with their peers; hence they 
may be more willing to interact and share with their peers. We note that interaction and sharing among 
MICA students, as well as comparing output with examples from the internet, is also encouraged by 
instructors. Bill confirms that students do RoA 3 and says:  

Bill:     There are places where the answers are on the internet and I encourage them to 
check that their program gives that output. 

Similarly for RoA 4, the proportion increases from 32% in MICA I to 72% in upper MICA. Bill again 
confirms that students do this constantly and are encouraged to do so:  

Bill:     It’s a public forum. Chat, talk, discuss. … We are collaborating and I want to foster 
that atmosphere. 

The last four RoAs do not appear to be social in the upper MICA community. Bill confirmed this in 
some cases: E.g. for RoA 6, Bill noted that it is not common for students to trust their translation of 
what they do on paper into the programming language. Finally, we note the low proportions (in *I 
don’t really know if it works) that may be interpreted as indicating that all students already have 
started to develop their “Validating” scheme to a certain degree by the end of MICA I.  

5. Social and individual aspects of schemes 
In this section, we further analyze the “Validating” scheme for two students, Mark and Kassie. 
Considering this individual level allows us to observe similarities and differences when a common 
RoA is mobilized by different students, and to deepen our analysis of the intertwined mathematics 
and programming knowledge involved in this process. For the sake of brevity, we focus on 
assignment 4 (question 1) from the MICA II course taken by Mark and Kassie, and we select only 
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one of the social RoAs. We also evoke other MICA II assignments that confirm the stability of the 
organization of students’ activity and illustrate variability depending on the mathematics. 

Presentation of assignment 4 

In this assignment, students investigated simulations of a battle between two opposing armies using 
discrete equations. The assignment contained three questions that became progressively more 
complex. In the first question, students were told to create a program to output the day-by-day 
evolution of the battle represented by the Lanchester equations: Xn+1 = Xn - a*Yn and Yn+1 = Yn - b*Xn, 
where a and b are fixed parameters and Xn and Yn represent the number of soldiers in the two armies 
on day n (the battle ends when Xn or Yn is less than 1). 

RoA 2: A common mobilization, different TiAs 
For question 1 of assignment 4, both Kassie and Mark mobilized RoA 2: “Once I have programmed 
it all, I run the program with a few different inputs and compare the output with my hand 
calculations”, which we found to be social among both MICA I and upper MICA communities. In 
their individual interviews, they declare for example: 

Kassie:     I did like the equations myself, just after like the first day of battle and kind of like, 
compared them with what I got with my program. 

Mark:     You’re able to, again, at least begin on paper to kind of understand and write it out 
yourself of what the expected results are going to be. So, because of that, I kind of 
just tried to do the first few questions by hand. 

We found evidence of the mobilization of RoA 2 by Kassie and Mark for other assignments as well, 
confirming that it is part of a stable organization of their activity. We infer that both Kassie and Mark 
developed a corresponding TiA, such as: “When the result I compute by hand and the output of my 
program coincide, my program is correct”. Both this general TiA and RoA 2 take different forms 
depending on the specific mathematical content. In assignment 4, once the parameters a and b and 
the initial values X0 and Y0 are chosen, simple computations using the recurrence relations can provide 
the successive values Xn and Yn. Students look for an exact match between the output and their hand 
calculations; however, they are only able to do this for a finite number of days in the simulated battle 
and eventually trust that the further iterations will be calculated properly too. In comparison, in 
assignment 1, where students adapted a program (presented in class) simulating the Buffon needle 
random experiment, they could compute by hand the exact probability (applying a formula given in 
class). They knew (law of large numbers) that the frequency computed by their program should 
converge towards this exact probability and used this mathematical result to check their program (in 
particular, Mark described his actions in this way). 

In the questionnaire, while Kassie said that she “Always” uses RoA 2, Mark answered “Rarely” 
(nevertheless we found evidence that he used this rule on several occasions when completing his 
MICA II assignments). One possible explanation for this difference is that Mark is aware that a hand 
calculation is not always possible, depending on the mathematics involved. For example, about 
assignment 2, where students had to use the daily return percentages of the Dow Jones from 1950 to 
2020 to compute the probability of a 2% drop, Mark said: 

Mark:     If you’re given, uh, a mean … or a standard deviation or anything like that, um, you 
can’t just verify your answer because you’d have, what over 50 years of data there. 
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It seems Mark developed another TiA associated with RoA 2: “The validation through hand 
calculation is only possible in some particular cases”. Thus we observe in this case that in the 
“Validating” scheme, even if RoA 2 can be considered as social among the upper MICA community 
because it seems to be shared by a majority of students, the associated TiAs are not necessarily shared: 
Mark has developed a TiA about the possibility, or not, to apply this rule, but we did not observe the 
development of this TiA by Kassie. 

6. Conclusion 
In our study we attempted to identify patterns in the culture of a community of students learning 
programming for mathematics inquiry, and more precisely to identify common RoAs in the schemes 
students develop. We also have investigated the development over time of these shared RoAs, and 
the TiAs associated with them. In this paper we focused on the scheme developed for the goal of 
“Validating the programmed mathematics”, which associates mathematical and programming 
knowledge, and RoAs for this goal that were identified in an earlier study. 

Students’ answers to a questionnaire confirm that some of these rules are shared by more than 70% 
of the students—we consider these rules as social aspects of the “Validating” scheme. A further study 
of schemes developed individually by two students evidences that the same rule can be associated to 
different operational invariants, perhaps depending on the profile and experience of the student. We 
also observed evolutions between MICA I and upper MICA students. We claim that the social aspect 
of the teaching (the orchestration by the teacher, collective students’ work, etc.) contributed to create 
a community, with its shared patterns. MICA I students progressively entered the upper MICA 
community and aligned with its practice (Lave & Wenger, 1991) in terms of using programming for 
mathematical inquiry. In this university context, the horizon is given by the practice of 
mathematicians using programming for their own research.  

The patterns of this practice were not explicitly stated in the MICA curriculum; they can be 
considered as operational knowledge, which is often not explicit. The teachers might be aware of 
some of these patterns and try to support students in addressing a goal in “proper” ways—using 
certain RoAs, based on certain TiAs. Nevertheless, they might also ignore some of these patterns; the 
identification of patterns by a research study can be helpful for them. 

Most research using the concept of schemes has focused on individual schemes. However, as 
emphasized by Vergnaud (2009), the scheme–situation pair is a powerful tool in mathematics 
education research. Studying the aspects of schemes shared or not by students in a situation can also 
help refine our understanding of the situation. Focusing on social aspects of schemes is important to 
better understand what the situation is, for a group of students. We claim that using schemes not only 
as a theoretical tool for research but also as a lever producing interesting results for teachers requires 
a consideration of the social aspects of schemes, and their social-individual dialectics. In our future 
research we will further investigate social schemes by networking the theoretical frames of the 
instrumental approach (Trouche, 2003) and communities of practice (Lave & Wenger, 1991).  
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