
Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Integration of Programming in the Undergraduate Mathematics Program at Brock
University

Chantal Buteau, Eric Muller, & Bill Ralph

In this paper we briefly describe the implementation of a sequence of three undergraduate
programming project-based mathematics courses at Brock University (Canada) since
their inception in 2001: classroom (lecture and laboratory sessions); curriculum,
including a detailed example of a programming-based mathematical task; selection of
programming languages; assessment; and a brief account of the course evolution until
today. We end by addressing the question: how do we know that “it” works?

KEYWORDS: programming; undergraduate mathematics education; third pillar of scientific
inquiry of complex systems; classroom implementation; programming-based mathematical task;
assessment; course evolution.

1. Introduction

Since 2001, the Department of Mathematics and Statistics at Brock University has integrated
programming into its core undergraduate mathematics program (Ben-El-Mechaiekh, Buteau, &
Ralph 2007; Ralph 2001) known as MICA, an acronym for Mathematics Integrated with
Computers and Applications. Through a sequence of three innovative project-based MICA
courses, mathematics majors and future mathematics teachers learn to design and program
interactive computer environments, which we have called exploratory objects (EOs), to
investigate mathematical concepts, conjectures, theorems, or real-world situations (Muller,
Buteau, Ralph, & Mgombelo 2009). These courses were designed around two of the program’s
principle objectives: i) to encourage mathematical creativity, and ii) to develop mathematics
concepts hand-in-hand with computers (Ben-El-Mechaiekh et al. 2007). These MICA courses are
partly a response to society’s need for mathematicians who are proficient in using technology to
understand complex systems which the European Mathematical Society (2011) has identified as
the third pillar of scientific inquiry: “[t]ogether with theory and experimentation, a third pillar of
scientific inquiry of complex systems has emerged in the form of a combination of modeling,
simulation, optimization and visualization” (p.2).

In this paper we briefly describe the implementation of MICA I-II-III courses1. Section 2
describes the classroom implementation, i.e., lecture and laboratory sessions, as well as the
overall curriculum. In Section 3, we elaborate on the implemented programming-based
mathematical tasks, and include a detailed example. We report on the selected programming
languages in Section 4, and in Section 5, we briefly describe the assessment used in the MICA
courses. Section 6 reports on the evolution of the MICA courses since 2001. We end by
addressing the question: How do we know that “it” works?

1 The MICA I-II-III courses that we refer to in this paper are the courses as described in the official 2015-16 Brock
calendar (http://www.brocku.ca/webcal/2015/undergrad/math.html), namely MATH 1P40, 2P40, 3P40. See Section
6 for a brief account of the evolution of theses courses since 2001.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

2. The MICA classroom: lectures and laboratory sessions, and curriculum

The challenge of learning both mathematics and programming and then putting the two together
in a useful way could easily be completely overwhelming to students. In order to ameliorate this
problem, the pedagogy of the MICA courses was purposely designed to build students’
confidence and fluency by having them create progressively more challenging and interesting
mathematics EOs (Buteau & Muller 2014). In first-year, MICA I students start to engage in the
“third pillar” by learning computer programming in an accessible and engaging mathematics
context (Buteau & Muller 2014). The focus in second-year MICA II and third-year MICA III
courses is to code and use simulation to explore more advanced mathematics and investigate
more complex systems. Table 1 illustrates the mathematics curriculum covered in the sequence of
the three project-based MICA courses by listing the assignments that are central to these
courses2. Topics in MICA I have remained more or less unchanged since 2001, whereas topics in
MICA II-III courses have evolved both over the years and according to the instructor’s
mathematics interests.

Year Project Topic
1 EO 1 Conjecture about primes or hailstone sequence

EO 2 RSA encryption method
EO 3 Discrete dynamical system (cubic with two parameters)
EO 4 Original, end-of-term project

Cohorts (Ralph’s 2011-12 cohort) (Fuks’ 2014-15 cohort)

2 EO 5 Buffon needle problem & Monte Carlo
integration

Discrete equations: Model of water
pollution in a system of two connected
lakes connected by a stream

EO 6 Stats application to stock market Systems of discrete equations: models of
the spread of infectious diseases

EO 7 Synchronization of traffic lights Dynamical system of the logistic
function & bifurcation diagram

EO 8 Markov chains applied to income
demographics and chronic illness

Stochastic models of bacterial growth

EO 9 Original, end-of-term project

3 EO 10 Dynamical system of the logistic
function & bifurcation diagram

Cellular automata models of road traffic
flow

EO 11 Simulation of battles (Lanchester
equations)

Empirical modes and curve fitting:
investigations of the Zipf's law.

EO 12 Prey-predator biological model (Lotka-
Volterra)

ODE models in pharmacokinetics,
Michaelis-Menten equation

EO 13 Cellular automata, simulation of
epidemics & costs

Pursuit problems in 2D, Hathaway's
circular pursuit

EO 14 Original, end-of-term project

TABLE 1. Examples of MICA mathematics curricula that have been evolving both in time and according to the
instructor’s mathematics interests.

2 For a detailed description, together with screenshots, of all fourteen EO projects of a student who enrolled in MICA
I in 2011, see Buteau, Muller, Marshall, Sacristán, & Mgombelo (submitted).

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

The format of each MICA course is two weekly hours of lecture and two weekly hours of
computer laboratory session and course sections are usually capped at 35 students. The lectures
mostly provide the mathematical content as background and motivation for the programming-
based mathematical tasks done or prepared during the lab sessions. In particular, the MICA I
lectures include classroom activities that encourage students to make their own mathematical
conjectures which we see as an initial step in the third pillar. Since the MICA I course has a large
programming component, the laboratory sessions have been carefully designed to help students
create their first mathematics EOs (Buteau & Muller 2014). Up until now, most students have
enrolled in MICA I with no prior programing background. Table 2 provides a summary of the lab
activities in MICA I which highlights the progression of programming concepts needed and
learned throughout the first 10 weeks of MICA I; the last 2 weeks are devoted to the end-of-term
EO project.

Week Programming concepts Main Lab Activity Assignment
submission 	

1 Designing a graphical interface Writing (i.e., copy line by line) a first program
2 Programming variables “Hello World” & creating a basic calculator,
3 Conditional structure, loops Check primality of an integer
4 Function and Sub-procedures Create table of n, n2, & n3 EO 1
5 Arrays Powers in Zn
6 gcd, Euler’s function, inverse in Zn
7 Graphics (& systemic

exploration of a concept)
Draw different shapes & exploration of Euler’s theorem EO 2

8 Graph of a function Graphing a parabola, points, and coordinate system
9 EO for the exploration of the dynamical system of the

logistic function (numerical table and cobweb)

10 (systemic exploration of a
dynamical system)

Exploration, guided by instructor, of the dynamical
system based on the logistic function

EO 3

11 Individual work on final project
12 Individual work on final project EO 4

(in following week)

TABLE 2. Programming concepts learned through activities during the two-hour weekly MICA I laboratory
sessions.

In the second-and third year MICA II-III courses, lectures continue to provide the mathematical
content for students to create and use mathematics EOs on a broad-range of topics. They usually
each contain five EO projects (programmed in vb.net and at times possibly in Maple). The lab
sessions are also used to introduce ancillary material such as reading data from files or the use of
multi-dimensional arrays.

3. The main programming-based mathematical tasks – The EO projects

The creation and use of the EO assignments is done in part during laboratory sessions but mostly
outside classroom time. Each EO project contains not only the interactive environment, but
usually also a written (i.e., a type of scientific lab) report. Among the fourteen individual EO
projects that students construct over their three MICA courses, eleven of these are assigned

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

through guidelines provided to students, and the remaining three, at the end of each course, are on
a topic selected by the students themselves either individually or in groups of two or three.

The mathematical work in each assigned EO involves two facets: firstly, students create
programs based on mathematics from the lectures, and secondly, they use their EO program to
conduct experiments to explore mathematics that is unknown to them (Buteau et al., submitted).
In some cases, students are also required to develop the model under investigation, and will need
to learn and program mathematics not covered in lectures (Buteau et al., submitted). Diagram 1,
summarizes a task analysis for EOs and shows the decision process that follows once students
select a topic. It provides some insights into the students’ activities as they create and use their
EO (Buteau & Muller, 2010; Marshall & Buteau, 2014). We suggest that it provides a possible
model of a student engaging in the third pillar of scientific inquiry.

DIAGRAM 1. Development Process Model of a student creating a computer environment for a mathematical
investigation or application (modeling or simulation) (Buteau & Muller 2010; Marshall & Buteau 2014).

As an example we consider the first-year EO 3 assignment for which the assignment guidelines
given to the students can be found in Appendix 1. During lectures, students use the logistic
function to learn about dynamical systems and cobweb diagrams. In the laboratory sessions,
students progressively learn about graphical representations of dynamical systems in vb.net over
three lab sessions: at first, they explore graphics features in vb.net (this corresponds to week 7 in
Table 2), and in the following lab session (week 8 in Table 2), they engage in a guided task about
graphing a parabola and a coordinate system – see Appendix 2 for the lab guidelines. In this
exercise, students find that they need to known the mathematics behind coordinate changes which
motivates the teaching of this material at this point. Situations like this one in which the
mathematics is taught after the student encounters a problem or issue often arise in these MICA
courses. In the third lab session, students code the graph of the logistic function which requires a
parameter, generate the orbits and create the cobweb diagram (this corresponds to week 9 in
Table 2). The following lab session involves an interactive lecture in which students use their
individual EOs created in week 9 to conduct an instructor guided exploration of what happens to
the logistic dynamical system as the parameter is changed. Finally students modify, extend, and
use their code to explore the system based on a cubic function involving two parameters and
submit their EO and their write up as their EO 3 assignment. A screenshot of one student’s
approach to this third assignment is shown in Figure 1.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Figure 1. Screenshot of a student’s EO 3 for the exploration of the dynamical system based on a cubic (Buteau et al.,
submitted).

Each MICA course culminates with an original end-of-term EO project (EOs 4,9,14 in Table 1)
for which students are encouraged to select a topic of interest to them. Future teachers may
decide to create an EO for the step-wise guided learning of a school mathematics concept, which
we have called a learning object (Muller et al. 2009). Examples of original EO and learning
object projects can be found on MICA URL (n.d.); for example, MICA students Matthew and
Kylie wondered if it is better to walk or run in the rain (Figure 2, left), while Adam investigated
the bounded area, as the exponent increases, of the iterative complex function defining the
Mandelbrot set (Figure 2, right). These original projects “can be regarded as milestones where
students are able to demonstrate their ability to engage in the third pillar on a topic of their
choice” (Buteau et al. submitted, [p.15]).

FIGURE 2. To the left, Matthew and Kylie’s real-world situation original EO project: “Is it better to walk or run in
the rain?”; to the right, Adam’s pure mathematics EO project about the bounded area of the iterative complex
function defining the Mandelbrot set as the exponent increases. See MICA URL (n.d.) to run these EOs or for other
examples of students’ original EO projects.

4. Selected programming language(s) in MICA courses

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Since 2002, Visual Basic.NET has been used in the MICA I course, and continued in MICA II.
Sometimes the instructor of MICA III changes to Maple rather than continuing to use vb.net.
There are two main reasons for using vb.net, namely: i) vb.net is being widely used in industry
for rapid prototyping; and ii) for its user-friendliness, in particular for the design and use of
graphical interfaces.

Our students have the option of taking two additional elective programming-based courses
focussed on partial differential equations (MATH 3P51 Applied Mathematics with Maple and
MATH 3P52 Partial Differential Equations in C++). The former usually involves programming
Maplets in Maple, whereas the latter involves C++ language.

Furthermore, many of our students voluntarily decide in their third or fourth year to enrol in a
formal programming course (e.g., JAVA) offered by the Computer Science department. The
rationale they most often mention is that they: i) seek greater fluency with programming for their
mathematical activities; and ii) want enrich their portfolio for future employability purposes.

5. Assessment in MICA courses

The activity of creating and using mathematical EOs is central to the MICA courses and its
importance is reflected in each of the MICA course’s evaluation scheme where about 75% of the
total grade is assigned to these projects. The remaining 25% is allocated to written tests that focus
on the mathematical content of the course. In the MICA I course we’ve also added, since 2012,
short programming quizzes to motivate the students and to try to ensure that they have learned
enough of the programming basics for them to succeed in the subsequent MICA courses.

In regard to the evaluation of the projects, each one is graded according to specific criteria that
assess the EO and written report that focuses on mathematics and considers communication,
effectiveness, interface design, programming sophistication and creativity. See Appendix 1 for an
example of the grading scheme outline for EO 3 assignment.

6. The continuing evolution of MICA courses

Originally, the MICA courses were introduced as core courses, spread across 5 terms, for all
mathematics majors and future mathematics teachers: 1 term in year 1, a full second-year course,
and a full third-year course (Buteau, Muller, & Marshall forthcoming). These courses were in fact
introduced in the context of the new core undergraduate mathematics program, also called MICA,
launched in 2001 by our department (Ralph 2001). The MICA courses described in the
departmental adoption document in 2000 have however evolved over time (Buteau et al.
forthcoming).

In the first implementation of MICA I course in 2001, the Department required its first year
students to complete a JAVA course prior to MICA I. It seems that these mathematics students
found this course challenging because it did not include any programming relevant to
mathematics (Muller et al. 2009). In 2002 the Department removed the JAVA course requirement
and integrated VB.net programming within the MICA I course. This has made a big improvement
in student attitudes and this change has remained until today.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

In 2009, the third full-year MICA core course lost its MICA designation and was split into two
elective term courses focused on PDEs, namely, MATH 3P51 and MATH 3P52 already
mentioned in Section 4 (Buteau et al. forthcoming). The MICA courses now occupied three
terms, one in first year, and a full-year (two terms) in second year.

In 2015 our department decided to rename its core undergraduate program as B.Sc. Mathematics
and Statistics and made modifications to the core curriculum. The second full-year MICA course
was split into two one-term courses to be offered in year 2 and year 3 (i.e., MICA II and MICA
III in this paper3) of the renamed B.Sc. program. Furthermore, MICA I-II courses have remained
in this new program a core requirement for all majors except those opting for the pure
mathematics concentration, whereas MICA III remains a core requirement for only one
concentration, namely the mathematics integrated with computers and application (MICA)
concentration, as well as for the B.Sc. Mathematics/Co-op program. Students enrolled in the
mathematics education concentration, or in the B.Sc.(math)/B.Ed program, are now required to
complete a MICA III* course, titled Visual and Interactive Mathematics, for which MICA II
course is a prerequisite and which includes a focus on learning objects. The newer version of
MICA III and MICA III* courses will be offered for the first time in 2016-17.

7. Conclusions - How do we know that “it” works?

This important question was raised during the discussion following the Buteau presentation at the
Symposium and having taken some time to reflect, we have decided to respond in more detail in
the Proceedings. Our reflections are based on our experience of 15 years of implementation and
what we have learned from our research. In the following, we answer the question, how do we
know that “it” works?, by considering “it” from three different perspectives of MICA courses: i)
the curriculum; ii) the pedagogy used; and iii) the students’ learning experiences.

i) An important addition to a traditional mathematics curriculum
If ‘it’ is the MICA curriculum, then we need to be aware that course curricula, in many university
mathematics departments, including the one at Brock, are approved by a majority of the full time
faculty. Traditionally faculty spend most of the time focused on the mathematical content
including pre-requisites of a new or revised curriculum and they spend little or no time
considering the delivery of that curriculum. In the case of the MICA courses three aspects raised
the most discussion: the first arose from the non-traditional nature of the mathematics content
(for example simulation and modelling) which was to be covered in the first three years of the
undergraduate degree; the second was the designation of the courses as core, that to be required
of all majors, and; the third focused on the need for students to program or code. After much
study the Department approved the MICA courses and these have been offered continuously
since 2001. So the curriculum of the MICA courses received from the department’s faculty as
much, if not more, scrutiny as other core courses in analysis, algebra, etc. The revisions to the
MICA courses, in 2015, were also scrutinized in the same manner, and the fact that the
Department decided to continue them in a revised format indicates that the courses have worked
for the past 14 years.

3 The MICA courses in this revised B.Sc. mathematics program will be taught starting Fall 2015. The description of
the MICA courses in this paper represents their implementation since 2002.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Our confidence that the MICA curriculum worked was reinforced by a much larger body of
mathematicians when in 2011 the European Mathematical Society identified a third pillar of
scientific inquiry of complex systems that highlighted “a combination of modeling, simulation,
optimization and visualization” (p.2), areas of mathematics integrated 10 years before in the
MICA courses. Another key part of the MICA curriculum, programming, was also scrutinized by
the department’s faculty. Indeed, our confidence that programming in the MICA curriculum
works was also reinforced by a much larger body, namely the Society for Industrial and Applied
Mathematics (2012) which indicated that “programming and computer skills are the most
important technical skills that new [mathematician] hires take to their jobs” (p.25). The
integration of programming into our mathematics curriculum aligns with recent changes in
national school curricula, e.g. England, France, and Finland (Misfeldt & Ejsing-Duun 2015;
SITRA 2014). In summary, we argue that the MICA course curriculum works as it embodies
approaches of experimental mathematics, inquiry-based learning, learning by using/modifying
mathematics simulation, and learning mathematics by programming (Marshall & Buteau 2014).

ii) A different pedagogy that effectively integrates technology into the teaching of
mathematics
If ‘it’ is the pedagogy used in the MICA courses, we need to be aware of the difference between
the pedagogy in many traditional university mathematics courses and the pedagogy in the MICA
courses. Although different pedagogies have been developed in specific mathematics courses, the
most common method of university mathematics teaching is one where the instructor provides
and explains the concepts and techniques through lectures and the student is expected to work
through these together with additional instructor prepared problems. Normally settings with
assistance are provided such as, tutorials, laboratories, help sessions, etc. What is atypical in the
MICA courses? First the pedagogy aims to empower students to raise their own mathematical
conjectures or raise a question about a real-world situation which they feel can be analysed
quantitatively. Second the pedagogy aims to empower students to design, program, and use
interactive computer environments, to explore their own mathematical conjecture or real world
problem. In our research (e.g., Buteau et al. forthcoming) we have identified a close parallel
between the pedagogy used in the MICA courses with the constructionism paradigm (Papert
1991). Therefore not only do we rely on the instructors and TA’s views and impressions that, the
MICA pedagogy works but our confidence is also bolstered by some of the research results in the
constructionism and microworld literature (e.g., Papert 1980, 2000; Hoyles & Noss 1992).

iii) MICA course learning experiences favourably reviewed by students
If ‘it’ is the students’ learning experiences in MICA courses, we turn to students’ work, their
engagement in the classroom, and their views of how their MICA experience has worked for
them. As Instructors, we have not only observed during lab sessions how students have been
engaging in the programming-based mathematical activities (EOs), but have also evaluated their
mathematics content tests as well as their EOs which overall provide us with some confidence of
students’ learning in MICA courses. As researchers, we thoroughly examined the complete
mathematical work of a student over the 16 months of her MICA I-II-III courses (Buteau et al.
submitted). Her experience suggests a greater retention and deeper knowledge of the covered
mathematical content in MICA courses, as well as proficiency in the third pillar due to the
continuum of programming found throughout the sequence of the three-term MICA courses. The
student herself reflects (Muller, Buteau & Sacristán 2015, p.217):

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

MICA is the reason why I’ve succeeded during my coop work terms. It has provided me
with both the mathematical background and programming knowledge required to exceed
management expectations.

Another student seems to point not only to a sense of proficiency in engaging, with
programming, in the third pillar, but also to a sense of epistemological empowerment (Buteau et
al. submitted, [pp.14-15]):

In almost any scenario, the creation of a mathematical model on a computer program can
be made to simulate, test, explore or discover any dynamical system… MICA has opened
my learning pathway to explore the possibility of being able to create models for major
companies to be used for research purposes… The possibilities are only limited to the
creativity of the mathematician making the models. I think the major skill I will take with
me from MICA courses is the ability to create, analyse and explore dynamical systems
and make the connections between them and the real world.

Overall, students seem to also view developing, as they progress through their MICA courses, 15
key competencies similar to those observed from research (e.g. Wilensky 1995) on programming-
based, constructionist approaches to mathematics learning; for example i) to engage in the
process of mathematics research; and ii) to closely reflect on problems (Buteau, Muller, &
Marshall 2014). However, we are aware that some students find it more difficult to engage in
learning in the MICA courses. For example, a student indicates: “Sometimes I was not even able
to understand these mathematical models because I was too focused in getting the code right. It
was a very stressful course” (Buteau et al. forthcoming, [p.10]).

In a recent paper (Muller et al. 2015) discussing the MICA implementation in Mathematics
Today, the professional journal for the UK Institute for Mathematics and Applications, we have
included solicited reflections by students who had completed the MICA courses. We end with
some of these reflections: Laura, a student now completing her masters in mathematics, indicates:

[l]earning how to program and then use that skill to ‘do math’ in this new sense gave me a
feeling of empowerment as a young mathematician that I had never felt previously.

Jessica, a high school mathematics teacher and programme leader for her school board explains:
The MICA program truly deepened my understanding of mathematics in the current
world. This understanding has been beneficial to me in my work with secondary students
as I can explain how mathematical modeling is applicable to the world around them and
even help them with the basics of modeling real-world phenomena using computer-based
applications.

Colin, a post-doctoral fellow in a school of pharmacy concludes our examples of students’
reflections:

During these [MICA] courses, the wide breadth of computational tools that were used to
solve mathematical problems granted me with an increased capability to tackle problems
from many different research areas. The exposure to computer programming has also
proven invaluable to my development as a scientist.

References

Ben-El-Mechaiekh, H., Buteau, C. and Ralph, W. (2007) MICA: A Novel Direction in Undergraduate Mathematics

Teaching. Canadian Mathematics Society Notes, 39 (6), 9-11.

Buteau, C., & Muller, E. (2010). Student Development Process of Designing and Implementing Exploratory and

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Learning Objects. Proceedings of the sixth conference of European Research in Mathematics Education, Lyon,
France, 2009, 1111-1120.

Buteau, C., & Muller, E. (2014). Teaching roles in a technology intensive core undergraduate mathematics course. In
A. Clark-Wilson, O. Robutti, & N. Sinclair (eds.), The mathematics teacher in the digital era (pp. 163-185).
Springer Netherlands.

Buteau, C., Muller, E., & Marshall, N. (2014). Competencies Developed by University Students in Microworld-type
Core Mathematics Courses. Proceedings of the Joint Meeting International Group Psychology Mathematics
Education (PME 38), 209-18.

Buteau, C., Muller, E & Marshall, N. (forthcoming): When a university mathematics department adopted core
mathematics courses of unintentionally constructionist nature – really? Accepted for publication in Digital
Experience in Mathematics Education.

Buteau, C., Muller, E., & Marshall, N., Sacristán, A.I., & Mgombelo, J. (forthcoming). Undergraduate mathematics
students appropriating programming as a tool for modelling, simulation, and visualization: A case study.
Submitted manuscript.

European Mathematical Society (2011). Position Paper of the European Mathematical Society on the European
Commission’s Contributions to European Research [online].
http://ec.europa.eu/research/csfri/pdf/contributions/post/european_organisations/european_mathematical_society.pdf.
Accessed 20 July 2015.

Hoyles, C., & Noss, R. (1992). A pedagogy for mathematical microworlds. Educational studies in Mathematics,
23(1), 31-57.

Marshall, N. & Buteau, C. (2014). Learning by designing and experimenting with interactive, dynamic mathematics
Exploratory Objects. International Journal for Technology in Mathematics Education, 21(2), 49-64.

Marshall, N., Buteau, C., & Muller, E. (2014). Exploratory Objects and Microworlds in university mathematics.
Teaching Mathematics and its Applications, 33, 27-38.

MICA URL (n.d.). Exploratory and Learning Objects created by Brock students in mathematics courses [Online].
Available: www.brocku.ca/mathematics/studentprojects

Misfeldt, M., & Ejsing-Duun, S. (2015). Learning mathematics through programming: an instrumental approach to
potentials and pittfalls. In Proceedings of the 9th Congress of European Research on Mathematics Education.

Muller, E., Buteau, C., Ralph, W., & Mgombelo, J. (2009). Learning mathematics through the design and
implementation of Exploratory and Learning Objects. International Journal for Technology in Mathematics
Education, 16(2), 63-74.

Muller, E., Buteau, C., & Sacristán, A.I. (2015). Through the Looking-Glass: Programming Interactive Environments
for Advanced Mathematics. Mathematics Today (Dec. 2015), 212-217.

Papert, S. (1980). Computer-based microworlds as incubators for powerful ideas. In R. Taylor (Ed.), The computer in
the school: Tutor, tool, tutee. New York, NY: Teacher’s College Press, 203–210.

Papert, S. (1991). Situating Constructionism. In I. Harel, & S. Papert (Eds.), Constructionism (1–11). Norwood, NJ:
Ablex Publishing Corporation.

Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39.

Ralph, W. (2001). Mathematics takes an exciting new direction with MICA program. Brock Teaching, 1(1), 1.

SITRA – the Finnish Inovation Fund (2014). Future will be built by those who know how to code. Retrieved from
http://www.sitra.fi/en/artikkelit/well-being/future-will-be-built-those-who-know-how-code

Society for Industrial and Applied Mathematics (2012). Mathematics in Industry Report. Retrieved from
http://www.siam.org/reports/mii/2012/report.pdf

Wilensky, U. (1995). Paradox, programming and learning probability. Journal of Mathematical Behavior, 14(2),
231–280.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Appendix 1 (EO 3 Assignment Guidelines — Winter 2014)

Your goal is to write a program that allows a user to first input a particular cubic equation and then explore its
dynamics on the interval [0,1].

Participation in the lecture [about the interactive exploration of the dynamical system of the logistic function] with a
working program: (5 marks)

Part I: Your interactive dynamical system exploration program on a CD (or USB key)

1) The user should be able to enter the parameters a and b for the function g(x)=-2x3 + 3(a+b)x2 - 6abx + 8

2) Your program should (internally) find the exact maximum M and minimum m of the function g(x) on the interval
[0,1]. (Hint: Use the closed interval method)

3) Set f(x) = (g(x)-m)/(M-m). Note that the range of f(x) is exactly [0,1]. At the click of a button, we see the graphs
of y=f(x) and y=x appear. (These graphs should just touch the bottom and top of your picture box.) (20 marks)

4) The user should be able to enter an initial value for the dynamical system determined by f and at the click of
another button see a table of values appear and the dynamics (cobweb) drawn in the picture box as in parts 6) to 11)
of lab#9. (25 marks)

Your program should have an attractive user-friendly interface and good programming style: it should use
comments, functions and sub procedures, and should be efficient. (10 marks)

Part II: The exploration and hand-written (or typed) report. Your hard-copy report will consist of four parts
under the following headings:

1. INTRODUCTION. Write a short paragraph introducing your project. If you use resources (internet, book,

article, etc.), give the reference(s) — up to 8 lines (2 marks)

2. MATHEMATICS BACKGROUND USING AN EXAMPLE — up to 2 pages (8 marks)
a. Use the two last digits, d1 and d2, of your student number and set the values a=d1/10 and b=d2/10; this

defines a specific function g. Use it in the following.
b. Using any technology (e.g. Maple), draw the graph of g with domain [0,1].
c. Find the maximum and minimum of g, and define f as in step 3 (Part I).
d. Using any technology (e.g. Maple), draw the graph of f, and write a sentence or two to explain its

relation to the graph of g.
e. Select an initial values x0, use your program to compute the first 10 terms of the sequence of the

iterative function system based on f, and use the data to explain how the sequence is built. Identify the
convergence or divergence of the sequence.

f. Draw manually the corresponding cob-web (in the graph of f), and describe how the convergence or
divergence of the sequence is visualized.

g. Show how to find (algebraically) the fixed points of f (you may use Maple for computations), and plot
them in the graph of f. Using your program, classify them (attracting, repelling or neither) and describe
in your own words what each classification means.

3. DATA COLLECTION ABOUT INTERESTING CASES— up to half a page
a. Use your program to find values of a and b so that f(x) has three fixed points. Use any method

(including Maple) to prove that they are fixed points. Classify each point as attracting or repelling or
neither and give written evidence for your claims. (20 marks)

b. Find 3 different pairs of values of a and b and a starting value so that subsequent values oscillate closer
and closer to a finite number (between 3 and 100) of values. Describe what happens. (7 marks)

4. DISCUSSION/CONCLUSION. Write a short paragraph concluding your exploratory work (e.g., discuss further
about 3a) or 3b); about dynamical systems; about the use of cobwebs, etc). If you use resources (internet, book,
article, etc.), give the reference(s) — up to half a page (3 marks)

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Appendix 2 (Excerpts of Lab 7, 8, &9 Guidelines — Winter 2014)

In the following, we provide excerpts of lab guidelines used in MICA I course in Winter 2014 for preparing students
to their third assignment about the exploration of the dynamical system based on a cubic – with two parameters (EO
3 in Table 1).

1. Excerpt of Lab #7 Exploring Euler's theorem & Introduction to Graphics Guidelines

Exercise 1: Introduction to graphics

Create a new vb.net project. Put a picturebox and a button on a form and put this code under the button to see some
of the graphics commands at work. Note that the coordinate system on the picture box puts (0,0) at the upper left
hand corner.

 Dim g As Graphics
 Dim sdBrush As SolidBrush = New SolidBrush(Color.Red)
 Dim PBlue As New Pen(Color.Blue)
 Dim PRed As New Pen(Color.Red)

 Dim i, h, w, a, b As Integer
 g = PictureBox1.CreateGraphics
 g.DrawLine(PBlue, 23, 56, 200, 300)
 g.DrawRectangle(PRed, 23, 56, 20, 30)
 g.DrawEllipse(PRed, 150, 150, 250, 50)
 g.FillRectangle(sdBrush, 40, 60, 20, 30)

 h = PictureBox1.Height ‘what is the following code doing exactly?
 w = PictureBox1.Width
 For i = 0 To 100
 a = Int(w * Rnd())
 b = Int(h * Rnd())
 g.DrawRectangle(PRed, a, b, 1, 1)
 Next i

2. Lab #8 Function Graphs Guidelines

A) Graph of a Parabola
Create a new project with two buttons (Draw the parabola! & End) and one picture box. When clicking on the 'Draw
the parabola' button, the graph of the function y=x2-1 will appear in the picture box. At the end, your graph should
look like the following but without the numbers or tick marks on the axes:

a) Create a picture box (600 x 600). Draw the 2 axes in black.
b) Draw the origin as a yellow point
c) Draw 5 blue points on the graph of y= x2-1 for x=-2, -1,0,1, and 2.
d) Write a function
 Function xc(ByVal x As Double) As Integer
that changes the x-coordinates for graphing purposes.
e) Write a similar function called yc for the y-coordinates.

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

f) Draw the graph of the function in red. Hint: If (x1,y1) and (x2,y2) are two consecutive points to be graphed, then
graph the line joining these two points to get a smoother graph. Or draw many many points for which the x-values
are next to each other.

B) More Graphs
Create a new project called MyChaos. This project will be completed next week (at that point, you’ll understand why
it is called that way!). Your interface should contain two buttons ('Compute!' and 'End') and four text boxes.

1) Insert a text box and name it txtk. The value stored in this textbox will be the (real) factor to the quadratic function
f(x)=kx(1-x). Declare k as a global variable.

2) Define a function

f(ByVal x As Double) As Double
that returns the value f(x)=kx(1-x).

3) Write code to graph the parabola f(x)=kx(1-x) when the button is clicked, where k is a real number and dom f =
[0,1]. The parabola will always start at the lower left of the picture box and end at the lower right of the picture box.

• When k=2 the parabola’s maximum should be at the middle of the picture box. When k=4 the
parabola’s maximum should just touch the top of the picture box.

• Use coordinate change functions for changing the mathematics coordinates to vb.net graphing
coordinates (see part A)

• Use a Sub procedure Sub DrawFunctionGraph() to draw the function graph

4) Write a Sub procedure to add the graph of the diagonal y=x

3. Lab #9 Chaos Experiment Plate-Form Lab Guidelines

In this lab we create a program that will allow us to systematically explore next week the dynamical system based on
the logistic function. The following explains all the steps. It builds on Part B of lab 8:

[Note: Your 'Chaos Experiment Plate-Form' must be completed (5% of your Assignment 3 mark) before the
interactive lecture next week on March 20 during your scheduled lab.]

1) Create a new project, called MyChaos, with an interface that contains a button, a text box, and a picture

box. The dimensions of the picture box should be exactly 400 by 400.

2) Add a text box called txtInitial, and label it. The value stored in this textbox will be the initial value
used in the dynamical system.

3) Add a text box called txtBound, and label it. The value stored in this textbox will be the number of

iterations of the dynamical system.

4) Add a text box called txtk. The value stored in this textbox will be the (real) factor k of the logistic function

f(x)=kx(1-x). Define k globally, and define a vb.net function
Function f(ByVal x As Double) As Double

which returns the value kx(1-x).

5) Add a text box called txtOutput. The values that are output into this textbox will contain the entire sequence

of values generated by the dynamical system. Set the Multiline property to true and then resize the box to
make it as large as will still fit on your form. Set the ScrollBars property to Vertical.

6) Define a sequence of numbers by the formula xn+1=f(xn) for which f(x)=kx(1-x). Let M be the value the user

entered in txtBound. Write code that stores the values x0, x1,..., xM in an array (define the array as global,
and have the values computed and saved in the array in a Sub procedure:

Buteau, Muller, & Ralph (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock
University. In Online Proceedings of the Math + Coding Symposium, London (Canada), June 2015.

Sub ComputeSequence(ByVal m As Integer)

where m is the number of terms computed in the sequence, i.e., x0, x1, ..., xm. Also the following M+1 lines
of text appear in txtOutput for which the xi’s are the actual numerical values:

 0 x0
 1 x1

 M xM

8) Write code to graph the parabola f(x)=kx(1-x) when the button is clicked, where k is a real number between

0 and 4 that the user has entered into the textbox. The parabola will always start at the lower left of the
picture box and end at the lower right of the picture box.
• When k=2 the parabola’s maximum should be at the middle of the picture box. When k=4 the

parabola’s maximum should just touch the top of the picture box.
• Use coordinate change functions for changing the mathematics coordinates to vb.net graphing

coordinates (see lab 8)
• Use a Sub procedure Sub DrawFunctionGraph() to draw the function graph

9) Write a Sub procedure to add the graph of the diagonal y=x

10) Let x0 be the value the user entered in txtInitial. Write code so that a small red filled circle appears at the

point (x0, x0) on the screen, when the button is clicked.

11) Add more code to complete the cobweb: when the button is clicked, the following pair of lines is drawn on

the screen for every i from i=0 to i=M-1 the line from (xi, xi) to (xi, xi+1) AND the line from (xi, xi+1) to
(xi+1, xi+1). This should all be done through a Sub procedure:

Sub Cobweb(ByVal M As Integer)

And now experiment with different values of k and different values of x0 . Can you get a general sense of where this
dynamical system is well behaved and where it is chaotic? We will explore the amazing behaviour of this system in
detail next week.

